(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__primes → a__sieve(a__from(s(s(0))))
a__from(X) → cons(mark(X), from(s(X)))
a__head(cons(X, Y)) → mark(X)
a__tail(cons(X, Y)) → mark(Y)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__filter(s(s(X)), cons(Y, Z)) → a__if(divides(s(s(mark(X))), mark(Y)), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
a__sieve(cons(X, Y)) → cons(mark(X), filter(X, sieve(Y)))
mark(primes) → a__primes
mark(sieve(X)) → a__sieve(mark(X))
mark(from(X)) → a__from(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(filter(X1, X2)) → a__filter(mark(X1), mark(X2))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(true) → true
mark(false) → false
mark(divides(X1, X2)) → divides(mark(X1), mark(X2))
a__primes → primes
a__sieve(X) → sieve(X)
a__from(X) → from(X)
a__head(X) → head(X)
a__tail(X) → tail(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__filter(X1, X2) → filter(X1, X2)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__primes → a__sieve(a__from(s(s(0'))))
a__from(X) → cons(mark(X), from(s(X)))
a__head(cons(X, Y)) → mark(X)
a__tail(cons(X, Y)) → mark(Y)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__filter(s(s(X)), cons(Y, Z)) → a__if(divides(s(s(mark(X))), mark(Y)), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
a__sieve(cons(X, Y)) → cons(mark(X), filter(X, sieve(Y)))
mark(primes) → a__primes
mark(sieve(X)) → a__sieve(mark(X))
mark(from(X)) → a__from(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(filter(X1, X2)) → a__filter(mark(X1), mark(X2))
mark(s(X)) → s(mark(X))
mark(0') → 0'
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(true) → true
mark(false) → false
mark(divides(X1, X2)) → divides(mark(X1), mark(X2))
a__primes → primes
a__sieve(X) → sieve(X)
a__from(X) → from(X)
a__head(X) → head(X)
a__tail(X) → tail(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__filter(X1, X2) → filter(X1, X2)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
a__primes → a__sieve(a__from(s(s(0'))))
a__from(X) → cons(mark(X), from(s(X)))
a__head(cons(X, Y)) → mark(X)
a__tail(cons(X, Y)) → mark(Y)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__filter(s(s(X)), cons(Y, Z)) → a__if(divides(s(s(mark(X))), mark(Y)), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
a__sieve(cons(X, Y)) → cons(mark(X), filter(X, sieve(Y)))
mark(primes) → a__primes
mark(sieve(X)) → a__sieve(mark(X))
mark(from(X)) → a__from(mark(X))
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(filter(X1, X2)) → a__filter(mark(X1), mark(X2))
mark(s(X)) → s(mark(X))
mark(0') → 0'
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(true) → true
mark(false) → false
mark(divides(X1, X2)) → divides(mark(X1), mark(X2))
a__primes → primes
a__sieve(X) → sieve(X)
a__from(X) → from(X)
a__head(X) → head(X)
a__tail(X) → tail(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__filter(X1, X2) → filter(X1, X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__primes,
a__sieve,
a__from,
mark,
a__head,
a__tail,
a__ifThey will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(6) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
The following defined symbols remain to be analysed:
a__sieve, a__primes, a__from, mark, a__head, a__tail, a__if
They will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__sieve.
(8) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
The following defined symbols remain to be analysed:
mark, a__primes, a__from, a__head, a__tail, a__if
They will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(
n11_0)) →
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(
n11_0), rt ∈ Ω(1 + n11
0)
Induction Base:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(n11_0, 1))) →RΩ(1)
s(mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0))) →IH
s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(c12_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Lemmas:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
The following defined symbols remain to be analysed:
a__primes, a__sieve, a__from, a__head, a__tail, a__if
They will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__primes.
(13) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Lemmas:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
The following defined symbols remain to be analysed:
a__from, a__sieve, a__head, a__tail, a__if
They will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__from.
(15) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Lemmas:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
The following defined symbols remain to be analysed:
a__head, a__sieve, a__tail, a__if
They will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__head.
(17) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Lemmas:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
The following defined symbols remain to be analysed:
a__tail, a__sieve, a__if
They will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__tail.
(19) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Lemmas:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
The following defined symbols remain to be analysed:
a__if, a__sieve
They will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__if.
(21) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Lemmas:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
The following defined symbols remain to be analysed:
a__sieve
They will be analysed ascendingly in the following order:
a__primes = a__sieve
a__primes = a__from
a__primes = mark
a__primes = a__head
a__primes = a__tail
a__primes = a__if
a__sieve = a__from
a__sieve = mark
a__sieve = a__head
a__sieve = a__tail
a__sieve = a__if
a__from = mark
a__from = a__head
a__from = a__tail
a__from = a__if
mark = a__head
mark = a__tail
mark = a__if
a__head = a__tail
a__head = a__if
a__tail = a__if
(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__sieve.
(23) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Lemmas:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
a__primes →
a__sieve(
a__from(
s(
s(
0'))))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__head(
cons(
X,
Y)) →
mark(
X)
a__tail(
cons(
X,
Y)) →
mark(
Y)
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__filter(
s(
s(
X)),
cons(
Y,
Z)) →
a__if(
divides(
s(
s(
mark(
X))),
mark(
Y)),
filter(
s(
s(
X)),
Z),
cons(
Y,
filter(
X,
sieve(
Y))))
a__sieve(
cons(
X,
Y)) →
cons(
mark(
X),
filter(
X,
sieve(
Y)))
mark(
primes) →
a__primesmark(
sieve(
X)) →
a__sieve(
mark(
X))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
filter(
X1,
X2)) →
a__filter(
mark(
X1),
mark(
X2))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
true) →
truemark(
false) →
falsemark(
divides(
X1,
X2)) →
divides(
mark(
X1),
mark(
X2))
a__primes →
primesa__sieve(
X) →
sieve(
X)
a__from(
X) →
from(
X)
a__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__filter(
X1,
X2) →
filter(
X1,
X2)
Types:
a__primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
s :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
0' :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
cons :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
mark :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
from :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
true :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
false :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
a__filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
divides :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
filter :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
sieve :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
primes :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
head :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
tail :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
if :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
hole_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if1_0 :: 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0 :: Nat → 0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if
Lemmas:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
Generator Equations:
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(0) ⇔ 0'
gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(+(x, 1)) ⇔ s(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0)) → gen_0':s:from:cons:true:false:divides:filter:sieve:primes:head:tail:if2_0(n11_0), rt ∈ Ω(1 + n110)
(28) BOUNDS(n^1, INF)